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I. DIRECTOR’S OVERVIEW

This report represents the sixteenth annual summary of The Ohio State University Joint
Services Electronics Program (JSEP).

There have been a total of 33 Ph.D. and 24 M.Sc. degrees in Electrical Engineering
obtained under partial JSEP sponsorship. There are currently 6 Ph.D. and 3 M.Sc. students
being partially supported under JSEP.

As may be seen in the Annual Report Appendix, 10 reprints have been included for the
period September 1992 to September 1993. In addition, 6 papers have already been accepted

for publication in the coming year, an additional 11 papers have been submitted, and an

additional 16 papers are in preparation.

II. DESCRIPTION OF SPECIAL ACCOMPLISH-
MENTS AND TECHNOLOGY TRANSITION

The transfer of the compact range and target identification technology initiated under JSEP
support for time domain studies continues to make large advances. The installation of a
large compact reflector and a modern radar of our design has been completed for ASD at
Wright Patterson Air Force Base. This system will have all of the sensitivity of the Mini
Range reported last year and yet has a 14’ quiet (or target) zone. The reflector includes all
the most updated features of the ESL design. Dr. Brian Kent of ASD has expressed complete
satisfaction with its performance. It is the range we would like to have, but can never afford.
A large even more advanced compact range is currently being designed for NASA, Langley
which is specifically being focussed for measurements as low as 300 MHz. This new range
will fit in a room 40’ x 40’ x 80’ instead of the previously required 120’ x 120’ x 360’. The
cost savings in this case are enormous.

We continue to assist Rockwell (Tulsa) to update their RCS facilities. This work is on
a subcontract to the ESL from the Air Force. These and other advances were only possible
because of the initial JSEP support. This continues to be a case where a small investment of

basic research funds have been leveraged to generate much larger support and have achieved




major contributions for DoD. This has also lead to OSU-ESL involvement in the study of
Ultra Wide Band radar systems.

Our target identification work, also partially funded at one time under JSEP Time Do-
main Studies, is also being funded by several other agencies including Naval EOD Technology
Center and continues to be rather vigorous. Our focus here is on the detection of unexploded
ordnance which is a natural for the Complex Natural Resonance Techniques developed under
JSEP. While these studies are directed at Ground Penetrating Radar Design, some minor
effort is focussed on the target identification. We seek more robust techniques than have
previously been developed. Several new concepts already under consideration indicate that
a more directed research program in this area merits consideration. Again, JSEP funds have
been leveraged to initiate larger programs which have been supported continuously since
JSEP funding was terminated.

The research activities devoted to the Generalized Ray and Gaussian Beams continues
to be expanded by external [unding. This program is being expanded by use of such funds
which are more focussed on the requirements of the sponsors which include both the Air
Force and the Navy.

It becomes clear from the above that a major portion of technology transition of JSEP
research takes the form of additional supported research from other DoD agencies. Other
forms of transition include former graduate students, who upon graduation are employed in
DoD related positions, and publications of results of JSEP research. Yet another form of
such transition is represented by computer codes that incorporate the results of our research.
These complex codes are available to DoD related industries for 8 nominal fee of $250. Last
year 65 such codes were issued.

Our JSEP research continues to focus on electromagnetic related topics. There are four
major electromagnetics areas that were pursued in the past year.

The Diffraction Studies Work Unit has continued reseasrch on a time domain version of the
Uniform Theory of Diffraction. This time domain version (TD-UTD) has a major potential
flaw when the rays pass through a caustic, in that the fields become non-causal. However,
the fields in the causal region are correctly predicted. This has led to the development

of a means of discarding the non-causal component which appears to be successful. More




examples are being considered to further establish the validity of this development. This
TD-UTD solution should he most useful in predicting the early to intermediate time signals
and providing physical insight to various scattering processes.

The introduction of the Equivalent Current Method (ECM) and/or the Incremental The-
ory of Diffraction (ITD) which is useful in patching up the UTD in regions of diffracted ray
caustics has led to a time domain version for diffraction which is causal and which thus
provides in those situations an alternative to the procedure mentioned earlier for obtaining
causal responses. These techniques are designated as TD-ECM or TD-ITD and are being
tested initially on simple configurations; their development will next be focussed on more
general and thus also more complex radiating/scattering bodies.

Research in the Diffraction Studies Work Unit has continued on extensions of the Gen-
eralized Resistive Boundary Condition (GRBC) and the Generalized Impedance Boundary
Condition (GIBC). A generalized edge/junction condition is introduced to ensure unique-
ness and satisfy reciprocity. A synthesis algorithm has been developed to obtain a desired
resistive termination to control diffraction from an edge.

A third topic in the Diflraction Studies Work Unit involves the development of new
asymptotic canonical solutions. One of these is for a magnetic point current source on an
elongated smooth perfectly conducting convex surface when the observer is located in the
paraxial region. This makes it practical to extend the usefulness of diffraction concepts to
the paraxial (or near end fire) region where UTD has failed. This is an extremely significant
step and its usefulness is now being scrutinized. Another canonical solution is the diffraction
of an inhomogeneous (non-uniform and complex) plane wave by an impedance wedge. This
solution indicates that the shadow boundaries (which are a controlling factor in diffraction
theory) are quite different from those of a similar wedge which is excited by a conventional
real (or homogeneous) plane wave.

A fourth task involves the reflection/diffraction of a Gaussian beam. Last year, it was
noted that this represents an approach to replace the usual ray optics solution for very
complex geometries where the versatile ray optics solution becomes cumbersome. The two
dimensional (2-D) Gaussian Beam Diflraction (GB) by an edge has now been extended so

that it remains valid in the near zone just as the 2-D and 3-D GB reflection does. In the




3-D reflection case, the GB can exhibit general astigmatic effects. Diffraction of rotationally
symmetric GB’s by an edge in a 3-D curved screen has also been analyzed when the plane
of incidence is coincident with principal directions on the curved surface. Next, this solution
is to be extended to deal with the diffraction by general 3-D astigmatic GB’s. It is noted
that conventional complex source point (CSP) techniques, which are sometimes used for
generating GB’s in 2-D, and also rotationally symmetric 3-D GB’s, cannot be directly applied
to represent general 3-D astigmatic GB’s and hence it becomes necessary to develop useful
techniques different from the CSP based methods to deal with the reflection and diffraction
of astigmatic GB’s as are being pursued in this research.

Finite element techniques represent an area where the electromagnetics community has
focussed much attention in the past few years. They are particularly suited for analyzing
the scattering from penetrable bodies of arbitrary shape with arbitrary inhomogeneities.
However, the ultimate goal of treating 3-D targets that are very large in terms of wavelength
has not been achieved. Research under this work unit was focussed on three approaches for
extending the capability of the finite element techniques.

First, the work on the bymoment method has now been completed and some typical
results are compared with alternate solutions for a sphere, a lossy dielectric prolate spheroid,
and a dielectric cube. The bymoment method is a rigorous boundary truncation technique
which does not suffer the disadvantage of the approximate absorbing boundary conditions.
Namely, in the bymoment method, the grid can be placed close to the scatterer. The
bymoment method is also more efficient than a traditional coupled finite element/houndary
integral formulation. The efficiency is due to the fact that the boundary solution in the
bymoment method is decoupled from the finite element solution, whereas the boundary
solution in the finite element/boundary integral is directly coupled to the finite element
solution, reducing the sparsity of the finite element matrix.

Second, the measured equation of invariance (MEI), which was developed by Ken Mei at
Berkeley has been analyzed. The MEI is a boundary truncation technique which Mei claims
is rigorous for modeling perfectly conducting bodies while being much more efficient than
current rigorous techniques including the bymoment method. In the analysis, we show that

MEI is still only an approximate boundary condition and that its accuracy is based on the




choice of certain parameters. The analysis given in this report provides a systematic way
of choosing these parameters for producing good results. For 2-D convex geometries, MEI
has been very successful at producing accurate solutions. A numerical study has been done
to explain the reasons for this accuracy, and this study is presented in the accompanying
paper. The MEI has also been extended to model scattering from bodies of revolution. The
results are not as good as in the 2-D case. However, they are still reasonable. Results are
shown for a finite conducting cylinder and a conducting cone.

In the third part of this effort, the partitioning technique which was developed in the
previous year is modified to more efliciently model electrically large structures. The parti-
tioning techniques segments the structure into many sections. The finite element solution
within each sections is generated independent of the other sections. The sections are then
coupled to produce the correct solution. The biggest advantage of this approach is that the
computer memory is reduced by an order of magnitude or more for large targets. Also, the
method is ideally suited for parallelization.

The Integral Equations Work Unit has been focussed on evaluating the electrical prop-
erties of a 3-D artificial dielectric where the artificial media has been constructed from a
variety of periodic shapes (rods, loops, crosses, tees, etc.). Last year, the analysis was re-
ported for a 3-D periodic array of small spheres. Both the permittivity and the loss tangent
were evaluated. This year, we completed the analysis for an anisotropic array of wires. This
now leads to solutions for the electrical properties of composites. The results for a dielectric
wave pattern are given as an example. This is to be applied to typical composite structures
in the future. These results should be of great value to anyone using composites for analyzing
their electrical properties.

The Hybrid Studies Work Unit involves a cooperative effort for most of the researchers
involved in other work units. The goal is to combine techniques for radiation/scattering from
geometries for which no single solution would be practically possible. In the past UTD-MM
and MM-UTD solutions have been developed and are currently being employed to analyze
stripline antennas. Analytical methods with the generalized scattering matrix are also under
development as are hybrid combinations of high frequency ray techniques with the Finite

Difference Time Domain (FDTD) solutions. The combinations of these various methods




each offer unique possibilities to further understanding and evaluation of scattering/radiation
mechanisms. Current research has involved a number of important tasks. The main goal of
this includes analyzing electromagnetic phenomena associated with large complex structures
and the influence of materials on these phenomena. Topics covered in this past year: 1)
Analysis of conformal antennas, 2) radiation/coupling associated with antennas in a complex
environment, 3) radiation/scattering from airborne/spaceborne objects, 4) scattering from
an impedance wedge in the presence of a material body, 5) planar guided wave structures,
and 6) ray-FDTD method for inlet cavities.

The conformal antennas study involves the analysis of large but finite arrays of strip line
aniennas mounted on grounded substrates. Any brute force analysis (integral equations,
finite difference or any other isolated solution) becomes intractable for large arrays. The
hybrid solution (an MM-UTD form) is based on a UTD-like closed asymptotic form of the
grounded slab Green’s function. This should make it practical to replace the commonly used
infinite periodic array treatment and thus be better able to analyze finite arrays and arrays
mounted on surfaces with variable radii of curvature.

Radiation of large antennas in a complex environment has been of interest to the Navy
for ships for many years. Combining the generalized ray expansion and the Gaussian beam
technology appears to be leading to a tractable solution to this complex task where the
antenna beam must be scanned through a bewildering structure of masts and antennas, etc.

Evaluating radiation/scattering from airborne/spaceborne objects is indeed a complex
task that has faced the Air Force for many years and has become even more involved when
modern complex materials are included. There is a Tri-Service Electromagnetic Code Con-
sortium (EMCC) that is currently attacking this task via “brute” force techniques, using
finite difference/element solutions on ever larger, faster parallel computers. It is apparent
that these solutions will face limits on size, frequency and accuracy. The MM-UTD hybrid
solutions under study should make it practical to generate accurate estimates in the regime
where the previous solutions will fail.

The hybrid analysis of an impedance wedge in the presence of a material body will make
it possible to treat more realistic representations of practical structures. The crucial element

of this study is to obtain a numerically eflicient asymptotic form of the appropriate Green’s




function so that the associated moment method solution will contend with a minimum num-
ber of unknowns. Of course, practical structures may be material-coated wings, stabilizers,
etc.

The hybrid analysis of planar, guided wave structures has been conducted via a combi-
nation of Wiener Hopf and Generalized Scattering Matrix Techniques (WII/GSMT) and is
applicable to transmission lines with large lateral dimensions. It will complement existing
schemes which are more efficient for small structures. An application of this study, besides
being able to predict the modal structure for these guides, is to be able to combine it with the
analysis of planar patch or slot antenna arrays where such guided wave structures can serve
as feed lines (for the radiating array elements). An efficient hybrid solution of an integral
equation formulation of the combined antenna array and feed structure can be obtained if
one employs the few propagating and evanescent modes as the basis functions to represent
the unknown current on the feed lines as opposed to using a large number of conventional
subsectional basis functions over the entire feed structure. It is noted that most previous
analyses of planar guided wave structures are restricted to the dominant mode case. In
contrast, the present WH/GSMT hybrid scheme can be employed to obtain the higher order
modes of such structures. The integration of antenna arrays and feed lines is planned during
the future phases of this study.

Finally, the ray/FDTD method for treating inlet cavities is focussed on a very difficult
task where the engine interface terminates an inlet cavity. Previous solutions relied on some
highly approximate techniques, or on rigorous techniques applicable to relatively simple
body of revolution type terminations to obtain the reflection from the interface. In this
current hybrid solution, GRE is used to model the ducts and the FDTD is used to model the
very complex engine termination. This is extremely important since the jet inlets/engines

represent dominant scatterers in modern aircraft.
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III. DIFFRACTION STUDIES

Researchers:
R.G. Kouyoumjian, Professor (Phone: 614/292-7302)
P.H. Pathak, Professor (Phone: 614/292-6097)
R. Rojas, Senior Research Associate (Phone: 614/292-2530)

R.J. Burkholder, Post-Doctoral Researcher (Phone: 614/294-4597)
G. Zogbi, Graduate Research Associate (Phone: 614/294-9283)

1. Introduction

One of the research topics currently under investigation in diflraction studies deals with
the development of a time-domain version of the uniform geometrical theory of diffraction

(TD-UTD). Such a TD-UTD should provide a simple progressive wave picture for describing

the phenomenon of transient electromagnetic (EM) radiation and scattering. A TD-UTD
would thereby yield essentially the same physical insight into these wave phenomena as
that given by the simple ray picture of the uniform geometrical theory of diffraction (UTD)
which has been developed originally in the frequency domain (or continuous wave case).
The UTD was developed primarily at The Ohio State University [1]-[4] largely under past
JSEP support. This UTD development was essential for making the ray methods work
successfully in analyzing practical EM antenna and scattering configurations. The systemalic
introduction of special functions (characteristic of the diffraction processes which can occur
in such configurations) in the UTD development allows it to patch up the conventional
geometrical theory of diffraction (GTD), which was developed previously by Keller [5], within
the ray shadow boundary transition regions where the GTD fails. Initially, Keller developed
GTD expressions for describing the diffraction by edges and smooth convex boundaries
which were perfectly conducting. The UTD [1]-[4] procedure then subsequently extended
the GTD for diffraction by perfectly conducting edges and convex surfaces for use even in
shadow boundary transition regions as well as to deal with the radiation and mutual coupling
between antennas on smooth convex perfectly conducting surfaces, and even more recently to

deal with the diffraction of waves by perfectly conducting corners, and even by edges in non-




conducting surfaces. These extensions have made the UTD applicable to the analysis of many
complex radiating (antenna/scattering) configurations which can be built up from straight
or curved edges, convex boundaries, vertices, etc. It is important to note that the frequency
domain UTD solutions are important to the development of the TD-UTD since the TD-UTD
is being developed via an analytical inversion of the frequency domain UTD solutions into
the time domain (using a Fourier or Laplace inversion). Thus, additional developments in
the UTD are essential not only to accurately predict the EM performance of a wider class
of complex radiating systems than is currently possible, but also to accurately predict the
early to intermediate time transient response of those same complex radiating systems when
they are now excited by pulsed sources. An analytical TD-UTD solution would be far more
efficient and physically transparent than a numerical Fast Fourier Transform (FFT) inversion
of the frequency domain solutions to obtain the corresponding time domain solutions.
Direct time domain solutions are of great importance and interest in the area of short
pulse technology for radar target identification, remote sensing and other applications. At
present, a TD-UTD solution has been obtained for predicling the transient diffraction by
an edge in an otherwise smooth convex perfectly conducting surface; this has been achieved
by extending the TD-UTD solution for the special case of a straight, perfectly conducting
edge given earlier by Verrutipong and Kouyoumjian {6]. However, this TD-UTD solution
for a curved wedge can lead to a non-causal result for the transient diffracted field produced
by an impulsive plane wave illumination of the wedge if the diffracted ray in the corre-
sponding frequency domain UTD solution (used in the development of the TD-UTD result)
traverses a diffracted ray caustic before arriving at the observation point. Such non-causal
results can also occur in the transient reflection contribution from a smooth surface if the
geometrical optics (GO) reflected ray in the corresponding UTD solution (which contains
GO as its leading term) passes through a smooth canstic of reflected rays hefore arriving at
the observation point. These non-causal effects are presently under study and some steps
to overcome this limitation of the analytical TD-UTD solutions have been achieved, but
they need to be tested further with appropriate reference solutions as discussed later in the
slightly more detailed description of the present accomplishments in the area of diffraction

studies. The latter description will also include some recent analytical developments which
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have led to a new frequency domain UTD solution for the radiation within the paraxial
region of a smooth, elongated perfectly-conducting convex body containing a conformal slot
antenna. This important result is not only useful in its own right for the analysis of confor-
mal antennas and antenna arrays on smooth elongated bodies, but it can also provide the

basis for the construction of another related and important UTD solution for the paraxial

diflraction by smooth, elongated perfectly conducting bodies excited by nearby antennas.
In addition, it can be used to significantly simplify the development of a hybrid solution
for the radiation and scattering by modern aircraft and missile structures (see description
of work reported under Hybrid Studies). Another important canonical frequency-domain
UTD solution which has been developed recently is for the diffraction of an inhomogeneous
ple .e wave by an impedance wedge. It is expected that this UTD solution for inhomoge-
neous (or complex) plane wave diffraction will become useful in dealing with the modeling
of underground wave propagation in lossy regions containing highly conducting wedge-like
inhomogeneities. Such a UTD solution is also expected to be useful in the development
of efficient solutions to describe the diffraction by edges and other related configurations
when they are illuminated by Gaussian beams, since the latter can be synthesized in terms
of complex (or inhomogeneous) plane waves. Indeed, the study of reflection and diffrac-
tion of Gaussian beams is not only of importance in optics, but it is also important in the
analysis and design of millimeter (mm) and sub-millimeter (sub mm) wave antenna systems
and components. In the last reporting period, it was indicated that a set of approximate
and useful closed form solutions were developed for the reflection and transmission of quite
general three-dimensional (3-D) astigmatic EM Gaussian beams (GB’s) with a view towards
developing a GTD-like solution for GB’s. That was in turn preceeded by the development
of approximate closed form solutions for the near and far zone reflection of 2-D GB’s, and
for the approximate far-zone diffraction of 2-D GB’s by an edge in a perfectly conducting
curved screen. During the present reporting period, work has been essentially completed on
extending the previous far-zone edge diflraction of 2-D GB’s so that it now remains valid
in the near zone of the edge. In addition, a solution to the diffraction of a rotationally
symmetric GB by an edge in a 3-D curved screen has also been obtained in closed form for

the special case when the plane of incidence is lined up with the principal directions on the
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surface containing the edge. Additional extensions to include the diffraction of an astigmatic
GB by a perfectly conducting edge in an otherwise smooth boundary are in progress.

The development of additional highly useful frequency domain UTD solutions for describ-
ing the complex phenomena of the diffraction of waves by edges in material media which
are penetrable is continuing. In particular, a new UTD solution has been obtained for the
diffraction of an arbitrarily polarized EM plane wave incident obliquely on a perfectly con-
ducting half plane coated identically on both sides by a thin penetrable material. Such UTD
solutions are useful in the analysis of radiating systems associated with modern aerospace
vehicles which are partially coated with or constructed from complex penetrable materials.

The above developments are described next in slightly more detail.

2. Time-Domain UTD (TD-UTD)

Exact analytical solutions for transient EM radiation and scattering are available for only a
very limited number of simple configurations. It is therefore desirable to develop analytical
solutions for predicting the transient EM phenomenon associated with realistic radiating
configurations which are generally quite complex. Such analytical time domain (TD) solu-
tions would provide useful physical insight into the behavior of transient wave phenomenon
in a way which is generally not possible via the conventional numerical inversion of the cor-
responding frequency domain solution into the time domain. Thus, work was initiated to
develop a TD version of the UTD as discussed in the previous JSEP annual report. Such
a TD-UTD development would provide a progressing wave picture for transient radiation
and scattering that is analogous to the simple ray picture provided by the frequency domain
UTD. The development of a TD-UTD is being performed by an analytical inversion of the
corresponding frequency domain UTD. Since the UTD is an asymptotic high frequency tech-
nique, the corresponding TD-UTD should be valid in the early to intermediate times after
the arrival of the wavefronts corresponding to the diflerent frequency domain ray mecha-
nisms. It should also be possible to combine such TD-UTD solutions via a hybrid scheme
with the late time solutions which can be obtained from numerical solutions of the governing

space-time integral or differential equations.
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During the present period, the UTD solution for the diffraction by a perfectly-conducting
general curved wedge (1] has been transformed analytically to the time domain (TD). This
TD-UTD solution for describing the transient diffraction by a general curved wedge is ac-
tually a generalization of the TD-UTD solution obtained previously be Veruttipong and
Kouyoumjian [6]. It is noted that this TD-UTD wedge diffraction solution allows for both
the edge as well as the wedge faces which form the edge to be arbitrarily curved. However,
since the surface ray or whispering gallery mode effects are not present in the UTD solution
for a wedge in (1], the corresponding TD-UTD therefore also does not contain these eflects,
but they will be included in the future phases of this study. This TD-UTD curved wedge
solution is not causal for rays which pass through an odd number of caustics as mentioned
in the introduction and also as discussed in the previous annual report. This difficulty arises

from the fact that a frequency domain geometrical optics or diffracted ray field undergoes

X

a phase jump of +3

, for (e*?*!) angular frequencies, whenever it traverses a caustic. As
indicated in the previous annual report, a study was initiated to address this difficulty of
non-causality, and some steps to overcome this limitation have been achieved. In particu-
lar, it was examined as to when to properly turn on the time domain response (which is
otherwise non-causal) through an analysis of a useful test example which happened to be a
two-dimensional (2-D) concave parabolic reflector illuminated on axis by an impulsive plane
wave. That example was solved by the TD-UTD and compared with a solution based on
a valid physical optics (PO) approximation which could be inverted exactly into the time
domain (TD). This TD-PO solution provided information on a procedure for converting the
non-causal TD-UTD result (which resulted when the observer was located on the reflector
axis beyond the focus (caustic)) into a causal one. The resulting corrected TD-UTD so-
lution contains a precursor that exists prior to the arrival of the UTD wavefront for the
reflected field component, which has passed through the focus; however this precursor is now

causal. It remains therefore to arrive at a general rule to determine the turn on time for

the precursor so that it remains causal in other more general situations where a transient

wavefront has passed through an odd number of smooth caustics of the corresponding rays

in the frequency domain. With that view in mind, some additional configurations were an-

alyzed during the present period. In particular, an extension of the transient analysis of

12




the above mentioned 2-D concave parabolic reflector was performed to deal with a more
general 2-D curved reflector-flat strip combination. In this combination, a flat 2-D strip of
finite width was attached to one of the edges of the previous 2-D concave parabola. The
angle of the flat strip was allowed to vary and in one case it was made to provide a smooth
extension of the parabola along its tangent at the point of attachment. In the latter case,
the slope across the parabola-strip junction is made continuous, but the radius of curvature
is discontinuous there. For any other angle of the strip, the slope across the parabola-strip
junction exhibits a discontinuity. The example of a combined concave parabola-flat strip
geometry was chosen as it is much closer to a more general situation (as which might occur
on a complex object which is built up in terms of such combined surfaces) than is possible
with just a single parabolic contour of finite width. According to the procedure developed
to make the TD-UTD solution for the transient scattering by a single 2-D concave parabola
causal, it was predicted that the addition of the flat strip to the concave parabola would not
change the turn on time of the causal precursor for the reflected wavefront, in the corrected
TD-UTD solution for this case, from what it would be for just the concave parabola case
without the flat strip attachment. Indeed, this prediction was completely verified by a TD-
PO solution for the concave parabola-flat strip combination thus lending further support
to this procedure for making the TD-UTD causal. Additional tests are in progress, and a
numerical finite difference time domain (FDTD) solution is being sought to provide a more
rigorous reference solution than the TD-PO solution, and thereby more clearly demonstrate
the validity of the proposed procedure for keeping the TD-UTD solutions causal.

The UTD can be pstched up in the regions of caustics of edge diffracted rays, where it
fails, via the equivalent current method (ECM) |7, 8] or the incremental theory of diffraction
(ITD) [9]. Outside the caustic regic 2, the ECM and ITD automatically reduce to the UTD.
An alternative TD-UTD solution which remains causal through caustics of edge diffracted
rays is therefore being constructed by developing a time domain version of ECM, or ITD,
which can henceforth be referred to as TD-ECM, or TD-ITD, respectively. In particular,
the ECM based solution of Chiang and Marhefka [i0] wz: converted analytically into the
time domain in closed form for *} - case of an impulse plane wave illumination of a perfectly

conducting circular disc. This TD-ECM solution is causal and it compares well in the caustic
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region with the corresponding TD-PO solution which has also been developed. Furthermore,
the TD-ECM approach is seen to furnish the same information as that indicated by the
previous procedure to make the TD-UTD causal. Future work will involve the development

of TD-UTD and TD-ECM/ITD approaches to deal with more general situations such as

those required to deal with the transient response of complex radiating objects.

3. Diffraction by Thin Material Edges/Junctions and Coated
Conducting Edges

As reportea last year, two very important developments in this area of research are the use
of generalized impedance (GIBC) and resistive (GRBC) boundary conditions to téplace the
material scatterers and secondly, the development of generalized junction or edge conditions.
The GIBC are used to model conducting surfaces coated with thin materials; whereas, the
GRBC are used to model thin material slabs. The generalized edge/junction conditions,
which were obtained by means of a quasi-static analysis, are necessary to assure unique-
ness of the solutions. Furthermore, another significant property of these newly developed
edge/junction conditions is that they yield solutions that satisfy the reéiprocity principle.
Once the material scatterer is replaced by a GIBC/GRBC, the scattering problem becomes a
mixed boundary value problem. Two functional analytic methods, namely, the Wiener-Hopf
and the Maliuzhinets methods have been used to solve for the fields scattered by a variety
of geometries. The results obtained last year were published in two journals [11, 12] and
also were part of a PhD dissertation. A case not considered before, namely, the scatter-
ing by a coated perfect electric conducting (PEC) half-plane illuminated by an obliquely
incident plane wave, was considered this year. In this geometry, the coating is the same
on both sides of the PEC. The results of this study were submitted for publication to a
technical journal {13]. Currently, the more general case of different coatings on both sides of
the PEC half-plane is being considered. This latter geometry is more suitable for the Mal-
iuzhinets technique because the Wiener-Hopf scheme would yield matrices that need to be
factorized. At the present time only a very limited class of matrices can be factorized. The

Maliuzhinets-based analysis in conjunction with a GIBC of order O(t) will yield nonunique

14




solutions; however, the previously developed generalized edge conditions will allow us to
completely solve this mixed honndary value problem.

The results obtained in this topic of research are now being used in a varicly of ap-
plications. For example, the Maliuzhinets-based results for an impedance wedge have been
extended to treat the scattering by an impedance wedge with a resistive card attached to the
edge of the wedge [14]. The resistivity of the card can vary in a piecewise constant fashion
if multiple interactions are included to take into account the discontinuity of the resistivity
at a number of discrete points. These results have been used in conjunction with a synthesis
algorithm to design a profile of the resistivity to obtain a desired frequency response of a
PEC half-plane with a resistive card attached to its edge [15]. One case that was considered
was a Chebyshev response where five and nine section resistive cards were used. Some of
this work was funded by agencies other than JSEP, and there is the possibility of funding
by private industry to use these results in other areas such as antenna design.

Another application of the above research is an ongoing effort to obtain a hybrid solution
to the scattering by an impedance wedge with a material body of arbitrary shape and with
very general electrical properties attached to or in the vicinity of the wedge apex. Solutions
obtained in the past under this funding are being used to obtain a numerically efficient two
dimensional Green’s function. This work is described in more detail in the section of Hybrid
Studies in this report. A third possible application of the research conducted in this area that
may be explored in the near future is the extension of the results obtained in the frequency
domain to the time domain. However, since the final results in the frequency domain are
valid for high frequencies, the time domain results will be valid for early to intermediate
times.

As far as the development of new GIBC/GRBC is concerned, last year it was reported that
new boundary conditions were developed for planar chiral slabs. Although these boundary
conditions are exact, they cannot be easily used to solve boundary value problems. Thus,
it is necessary to obtain approximate expressions that are suitable for this purpose. There
are a variety of approximations that can be made depending on the accuracy that is desired.
In this past year, several approximate expressions for these newly developed GIBC/GRBC

have been developed. To access the accuracy of these new expressions, the fields reflected
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and transmitted by a chiral slab were calculated with these approximate GIBC/GRBC and

compared with the exact results.

4. Extensions of UTD

It is worthwhile to continue to extend the established power and versatility of the UTD to
deal with a wider variety of complex radiating configurations than is currently possible. This
can be accomplished by developing solutions to appropriate and useful canonical problems for
describing additional diffraction phenomena. Furthermore, continued developments in the
UTD can also be crucial to the development of new time domain UTD (TD-UTD) solutions
as well as to the development of hybrid methods which combine high frequency UTD with
low frequency numerical techniques.

During the present period, & new canonical UTD solution has been developed to predict
the radiation by a magnetic point current source (which can be simulated by an infinitesimal
slot antenna) on an elongated smooth perfectly-conducting convex surface when the observer
is located within the paraxial region. This new result extends the previously developed UTD
solution for antennas on a perfectly-conducting convex surface which was not valid within
the paraxial region [3]. Furthermore, the paraxial solution properly recovers the previously
developed UTD solution of [3] when the observation point moves outside the paraxial region.
The UTD transition function which keeps the new radiation solution valid within the paraxial
region is related to the parabolic cylinder function. This paraxial UTD radiation solution will
be able to predict the radiation within paraxial region of conformal antennas and antenna
arrays on smooth, perfectly-conducting elongated convex surfaces. In addition, it will be
very useful to the development of a hybrid MM-UTD solution (see more discussion in the
Hybrid Studies work unit) for aircraft/missile shapes which would slso remain valid within
the paraxial regions of such shapes. A hybrid solution currently developed for such shapes
is valid only outside the paraxial zone. This paraxial UTD radiation solution will be tested
for its accuracy by comparison with some appropriate measurement such as for an antenna
on an elongated spheroid (or ellipsoid) since it does not appear to be easy to find another
independent solution as a check for this relatively general electrically large spheroidal (or

ellipsoidal) configuration. An extension to this paraxial UTD solution is being investigated
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next. The latter important extension will allow one to predict the radiation within the
paraxial zone of antennas on an elongated smooth convex surface but with an end cap
to simulate, for example, the bulkhead in the nose of an aircraft where it is joined to a
transparent radome (which encloses an antenna assembly attached to the bulkhead).

Another useful extension to the UTD which has been achieved recently is the diffraction
of an inhomogeneous plane wave by an impedance wedge. This UTD solution is expected to
be useful, for example, in the analysis of the diffraction by a highly conducting wedge type
inhomogeneities in a lossy medium, as might occur in underground remote sensing with EM
waves. In particular, this solution indicates that the shadow zones are quite different than
those produced by a real (homogeneous) plane wave when it illuminates an impenetrable
wedge in a loss free medium. This UTD solution for the diffraction of an inhomogeneous
plane wave by an impedance wedge is also useful to the study of the diffraction of a Gaussian
beam (GB) by an edge since a GB can be synthesized in terms of a spectrum of homogeneous
and inhomogeneous plane waves.

The study of the reflection and diffraction of general three-dimensional (3-D) Gaussian
beams (GB’s) from curved perfectly conducting surfaces with edges is in progress. Such a
study is useful since there are some situations where ray techniques such as the GTD/UTD,
as versatile as they are, may become cumbersome or inapplicable. Examples of such situ-
ations may deal with the analysis/design of large reflectors with an array feed, or phased
arrays, especially in focal regions, and in the radiation and propagation of millimeter and
submillimeter waves through radiating systems or open or closed waveguide systems, etc.
The idea here is to attempt to develop a theory for propagation reflection and diffraction of
GB'’s which may in some sense be viewed as a GTD for GB’s. A set of approximate and
useful closed form solutions were developed for the reflection and transmission of 3-D astig-
matic GB’s; this was reported in the previous annual report. Prior to that, approximate but
accurate solutions were also developed for the reflection and edge diffraction of 2-D GB's;
the latter edge diffraction result was valid only in the far zone. During the present period,
work has essentially been completed on the extension of the previous far zone solution for
the edge diffraction by a 2-D GB so that it now remains valid in the near zone just as the 2-D

GB reflection solution does. Furthermore, the diffraction of rotationally symmetric GB’s by
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an edge in a 3-D curved screen has also been obtained in closed form for the special case
when the plane of incidence is lined up with the principal directions on the surface containing
the edge. The diffraction of 2-D and 3-D GB’s is analyzed by appropriately evaluating the
radiation integral over the high frequency estimate of the current induced on the diffracting
surface by these beams. The next step will be to generalize these results so that they remain
valid for general 3-D astigmatic EM GB’s, and following that, these general results will be
employed to demonstrate their usefulness in analyzing/synthesizing large reflectors and their

feed arrays as well as a host of other interesting radiating configurations via GB's.
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IV. INTEGRAL EQUATION ANALYSIS OF
ARTIFICIAL MEDIA

Researchers:

E.H. Newman, Professor (Phone: 614/292-4999)
M. Peters, Graduate Research Associate (Phone: 614/294-9273)

1. Introduction

This section will summarize our work in integral equation studies from September 1992 to
September 1993. In overview, our recent research has centered on integral equation and
method of moments (MM) solutions for artificial media. In particular, we have developed a
flexible and accurate integral equation and method of moments procedure for determining the
effective permittivity and permeability of artificial media. Previously the method has been
applied to relatively simple artificial media composed of 2D dielectric rods, short perfectly
conducting dipoles, and small lossy dielectric spheres [1, 10, 3]. During the past year we have
extended these techniques to artificial media constructed from thin conducting or dielectric
rods of essentially arbitrary configuration (i.e. straight rods, loops, crosses, tee’s etc.) {4, 5].
In particular, this has necessitated the computation of the eflective dyadic permittivity and
permeability of anisotropic artificial media.

As illustrated in Figure 1, an artificial medium is created by suspending a large number
of small scatterers, such as spheres, discs, dipoles, etc., in some host or background medium.
For computational convenience, the small scatterers are assumed to be identical and on a
periodic lattice. An electromagnetic field in this artificial medium will induce currents to
flow on or in the small scatterers. In this case, each of the scatterers can be viewed as having
a small electric and/or magnetic current moment, and thus the array can be viewed as having
some net electric dipole polarization P per unit volume and/or magnetic dipole polarization
M per unit volume. Essentially, the macroscopic scatterers in the artificial medium are
equivalent to the microscopic current moments produced by atoms and molecules in a real

medium.
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In the artificial medium, the electromagnetic field vectors are related by

Dn - quﬂ "_ PH = e”EH + ‘”ie . Eﬂ - Er . Ell (])

B® = uy(H" + M) = py(H" + X" -H") = o, - H° (2)

where (0, €y) are the permeability and permittivity of the homogeneous isotropic background
media, X° and X" are the dimensionless dyadic eflective electric and magnetic susceptibili-
ties, (j,, € ) are the effective dyadic permeability and permittivity of the anisotropic artificial
media, and the © superscripts indicate that the quantity has been computed for or averaged
over the center cell of the periodic lattice of the artificial media. The main purpose of our

research is to determine the effective permittivity and permeability of the artificial medium

as a function of:

1. the size, shape, and material composition of the small scatterers.
2. the density of the small scatterers

3. the frequency

This will permit the designing or “engineering” of an artificial medium to have some pre-
scribed (j1.,€.). The artificial media model also appears to be applicable to the modeling
of composite materials (see dielectric weave example below), battlefield combat induced at-
mospheric obscurants, such as chaff, rain, smoke, etc. [6] (see lossy dipole example below),
and absorbers. Another potentially interesting application is the inverse problem. That is
given the effective parameters of an artificial medium (say by measurements) what can be

deduced concerning the properties of the small scatterers.

2. Overview of the Method

At present we are considering an artificial medium composed of thin conducting or dielectric
rods of essentially arbitrary shape in a periodic lattice. It is assumed that a plane wave
is propagating in the artificial medium in a given direction. However, since the effective
permittivity and permeability of the artificial medium are unknown, the phase constant(s)
k. of this wave is unknown. The objective of the solution is to find this phase constant, from

which (f,,€.) can be deduced.
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Our method of solution is based upon an essentially exact full wave analysis. The first
step is to use the volume equivalence theorem to replace the array of small scatterers by the
background medium and unknown equivalent electric polarization currents. These unknown
polarization currents can be formulated as the solution to a volume integral equation. This
integral equation is exact and includes all interactions between the elements in the triple
infinite periodic array. However, due to the periodicity of the problem, the only unknown is
the current in the center element, and the volume integral equation need only be enforced
in the center element.

The integral equation is solved by a numerical technique known as the method of moments
(MM). Essentially, the unknown current on the center element is expanded in terms of N
basis or expansion functions, and the integral equation is enforced for N weighting or testing

functions. The result is that the integral equation is reduced to an order N matrix equation
(Z(k) =V (3)

where [Z] is the order N impedance matrix, V is the length N excitation vector, and I is
the length N current vector which holds the coefficients in the original expansion for the
current. As is emphasized in Equation (3), the elements in impedance matrix are a function
of the unknown phase constant k..

Since a plane wave is a solution of Maxwell’s source free equations, we seek a solution of

Equation (3) for which the excitation vector V = 0, i.e.,
[Z(k.)]I = 0. _ (4)

Such solutions can be termed the normal, natural, or eigenfunction modes of the artificial

medium, and are only possible if the determinant of the impedance matrix is zero, i.e.,
det|Z(k.)| = 0. (5)

Equation (5) must now be solved in an iterative fashion for k.. Once k. is known, (j,,&.)
can be found. For the simple case in which the artificial medium is an isotropic non magnetic

medium, then

kZ
kc = W/ o€, € = UZ[‘I. . (6)
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For anisotropic artificial media, more complex procedures are required to deduce the dyadic

effective parameters [4, 5].

3. Example Results

The insert in Figure 2 shows an artificial medium formed by a weave of dielectric wires
of relative permittivity 10 and loss tangents of 0 and 1. This dielectric weave is a model
for a composite material. The figure shows the effective relative permittivity of the artificial
medium as a function of the weave size L/),. The relative effective permittivity of the weave
is about 1.7. For the wires with a loss tangent of 1, the eflective loss tangent of the weave is
about 0.5.

One application for artificial media is in the design of chaff. For example, consider
the design of a chaff cloud composed of lossy dipoles, and designed to provide maximum
attenuation of an EM wave propagating through it. The question is what loss tangent for
the dipoles will maximize the effective loss tangent of the artificial media (and thus maximize
the attenuation of the EM wave). The insert in Figure 3 shows an artificial medium composed
of lossy thin wire dipoles of length 0.2),. The figure shows the effective permittivity and
loss tangent of the artificial medium as a function of the loss tangent of the dipoles. It is
seen that a dipole loss tangent of about 600 will provide a maximum effective loss tangent

of about 0.7 for the artificial medium.
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Figure 2: A dielectric weave composite material modeled as an artificial dielectric.

26

)

D R S R D Gh GF D G ON N EE Ee O B BN oG o -l




—T LANALEELER LA AL 1 LS LALER LR AR i 7 LA AR A RS | IR SN SN A I R B &

Trry

LAB A

LB ARRAAN RARRANLAL

Eer
BN DWW

o Ut O Ut O NN O WU

LAAARARARRAAS AALA

o
oo

o
[2)]
TIT

tan ¢,
o
>
vr‘r

llALl_Lj_Ll‘llJllll

BRI

0 g aanl Lo gl U S i

10 100 1000 10000 100000
tan 6, = Dipole Loss Tangent

Figure 3: An artificial media composed of lossy dipoles modeling a chaff cloud.

27




References

{1} J.L. Blanchard, “Integral Fquation Analvsis of Artificial Dielectrics™, PhD dissertation,
Ohio State University, Dept. of Mathematics, 1991.

[2] J.L. Blanchard, E.H. Newman, and M.E. Peters “Integral Equation Analysis of Artificial
Media,” IEEE Trans. on Antennas and Propagation, accepted for publication.

[3] M.E. Peters and E.H. Newman, “Analysis of an Artificial Dielectric Composed of Small
Dielectric Spheres,” IEEE Trans. on Antennas and Propagation, submitted for publica-
tion.

[4] E.H. Newman and M.E. Peters, “Integral Equation Analysis of Artificial Media,” 1993
IEEE Antennas and Propagation Society and Radio Science Meeting, Ann Arbor, Michi-
gan, June 28 - July 2 1993.

[5) M.E. Peters, “Method of Moments Analysis of Artificial Media Composed of Thin Con-
ductive or Dielectric Wire Objects,” PhD Dissertation, Ohio State University, Dept. of
Electrical Engineering, in progress.

[6] E.H. Newman and M.E. Peters, “Integral Equation Analysis of Artificial Media,” 1993
Workshop on the Electromagnetics of Combat-Induced Atmospheric Obscurants, El
Paso, Texas, Nov. 2-4 1993.

4. Integral Equation Studies — JSEP Publications
Published refereed journal papers:

1. N. Wang and L. Peters, Jr., “Scattering by Thin Wire Loaded with a Ferrite Ring,”
IEEE Transactions on Antennas and Propagation, Vol. 41, No. 5, pp. 694-697, May
1993.

Accepted refereed journal papers:

1. J.L. Blanchard, E.H. Newman and M.E. Peters, “Integral Equation Analysis of Artifi-
cial Media,” IEEE Transactions on Antennas and Propagation.

2. R. Torres and E.H. Newman, “Integral Equation Analysis of a Sheet Impedance Coated
Window Slot Antenna,” IEEE Transactions on Antennas and Propagation.




T - - «Ts ,ii-... .

V. FINITE ELEMENT TECHNIQUES

Researchers:
R. Lee, Assistant Professor (Phone: 614/292-1433)
U. Pekel, Graduate Research Associate (Phone: 614/292-7981)
Y. S. Choi-Grogan, Graduate Research Associate (Phone: 614/292-7981)
J. Jevtic, Graduate Research Associate (Phone: 614/294-9280)
T. Barkdoll, Graduate Research Associate (Phone: 614/292-7981)

1. Introduction

The research for Work Unit III in this past year has been to continue some of the research
work done the previous year. Also, we have begun work on several new and promising
research topics. All of the research in this work unit has been centered on the development
of numerical techniques which either improve the accuracy or the efficiency of the finite
element method (FEM) for electromagnetics.

There has been two major thrusts of the research this year. One is the development
and analysis of new boundary truncation techniques for electromagnetic propagation and
scattering problems in unbounded regions. In the previous two year’s reports, we provided a
short discussion of the development of the bymoment method for electromagnetic scattering
from three-dimensional (3-D) objects in free space. This work is now complete, and we will
show results for this method. Approximately one and a half years ago, a new boundary
truncation technique called the measured equation of invariance (MEI) was introduced by
Dr. Ken Mei. Based on the initial presentation of the method, we felt that this method
had the potential to overcome some of the weaknesses of the bymoment method. Over the
past year, the majority of our research efforts on boundary truncation methods has been
concentrated on the development and analysis of the MEI. The results of this work will be
discussed in this report.

The second major area of research is the continuing development of the partitioning tech-
nique that was discussed in last year’s report. In the partitioning method, the computation

domain is decomposed into subdomains. By decoupling the subdomains, we are able to solve
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the problem in each subdomain very efficiently. The final coupling of the subdomains is also
done in a very efficient manner. One of the other advantages of this partitioning method
is that it can be easily and efficiently implemented onto massively parallel computers. The

performance on a parallel computer will be discussed in this report.

2. The Bymoment Method for 3-D Scattering Problems

The bymoment method is a rigorous boundary truncation technique for the FEM. Over the
past two years, we have been developing the bymoment method for three-dimensional anal
ysis, based on the two dimensional formulation {1]. As with many methods, the extension to
three dimensions is not straightforward. The details of the derivation for the 3-D bymoment
method was presented in the annual JSEP report in 1991, and one should refer to that report
when considering the details discussed here. In that report, we chose to use a vector field
formulation for the FEM analysis, while we expanded the solution on the mesh boundary
in terms of two scalar potentials. By using two scalar potentials rather than a vector field
to represent the solution on the boundary, we are able to reduce the number of unknowns
on the boundary by 1/3. At the time of the report in 1991, we were unsure of the type
of expansion and testing functions that would be used for the bymoment method. In this
report, we describe the expansion and testing functions and validate the method on several
problems.

The accuracy and efficiency of the bymoment formulation is strongly dependent on the
choice of expansion functions used to represent two z-directed Hertz vector potentials on
the outer artificial boundary surface S where the finite element mesh is truncated. Two
plausible choices for the expansion functions are the spherical harmonics and the solutions
to a multipole expansion on an artificial surface which is enclosed by the mesh boundary
surface S. The multipole expansion has reportedly been successfully applied in integral
equation methods [2] In order to describe the bymoment method technique, the relevant
steps are shown for the case where the expansion functions are assumed to be spherical
harmonics. For the special case in which the scattering object has a spherical geometry, this
choice is the most natural one. For the case in which the more general multipole expansion

functions are employed, the resulting expressions will be conceptually very similar to the
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ones that are obtained when spherical harmonics are used. The two Hertz vector potentials

can be written on the surface S as

N n N n
o= Y Y avin (WE) , D= 3 Y bovin (kR
n=0m=U n=0m=0
ﬁe=inei ﬁm=inma ky = w Hu€y (7)

where {a’2} and {b,%} denote two sets of coeflicients to be determined by the “coupling
procedure” on the artificial boundary surface S’ shown in Figure 4; po and ¢, are the per-
meability and the permittivity of free-space, respectively; k, is the corresponding free-space
wave number, and the scalar expansion functions v, (h,ﬁ) are given for the case of spher-

ical harmonics by:

e (kuﬁ) = {j,. (kor) , A (Iq.r)} P (cos8){ cosm¢ , sinmé } (8)

In the above expressions, the superscripts “e” and “o” denote even and odd modes, re-
spectively, while the j, and A{?) functions represent the spherical Bessel functions and the
spherical Hankel functions of the second kind, respectively, which is in accordance with the
e*i“! type time-harmonic dependence that is assumed. The P functions are associated Leg-
endre functions, and the angular variables 8, ¢ lie in the ranges 0 < < x and 0 < ¢ < 2x,
respectively. The radial variable r lies in the range 0 < r < oo, and the integer indices m,
n are defined by 0 < n < N and 0 < m < n, where the integer N controls the number of
expansion functions.

The more general class of multipole expansion functions can be defined in a very similar

manner as:

co (kE) = ®)
{j,. (ko [F —7|), D) (ko |F — '1’-’|)} P (co80pmp) {cos My , 8in MPpp}

where the only difference between these more general multipole expansion functions and the
spherical harmonics lies in the fact that the multipole expansion functions are centered at
an arbitrary source point 7, where R =7 —7,0 < 8,,, < 7, and 0 < ¢, < 2. It should be
mentioned that the “optimum™ number and location of these multipoles for a given scattering

problem are highly dependent on the geometrical properties of the scattering object, and that
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Figure 4: The scattering object and the two artificial boundary surfaces S and S’.
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an “optimum” approach is presented in the literature (3] which enables the user to obtain
an “optimum” number of “numerically complete” multipole expansion functions centered at
“optimum” locations for a specific scatterer geometry.

Both of these classes of functions can be applied in order to expand the two Hertz vector
potentials in free-space. However, the multipole expansion functions are far more general
and versatile in terms of their adaptability to the bymoment method approach. In fact, the
spherical harmonics are known to be a special subset of the class of multipole expansion
functions. With regard to the choice of spherical Bessel or Hankel functions in order to
express the radial variation, it must be noted that one may have to choose the type of
function that expresses this variation in accordance with the properties of the incident field.
For instance, one must use the spherical Bessel functions (for both classes of expansion
functions) in the radial direction if the incident field that illuminates the scatterer is a plane
wave. This choice is due to the fact that the series expansion of a plane wave in terms of
spherical harmonics is known to contain spherical Bessel functions only.

In order to solve for the coefficients, we formulate the solution at the boundary in terms
of an integral equation in which we must choose a set of linearly independent vector testing
functions 3,-(5) and 3,-()"), which satisfy both the free-space vector Helmholtz equation and
the radiation condition at infinity. The two superscripts (E) and (M) which are associated
with these vector testing functions are more of a mathematical nature than of a physical
(i.e electric or magnetic) one. Clearly, in the special case where the scattering object is a
sphere, the most natural choice for the purpose of generation of these testing functions is
the same set of spherical harmonics used above to expand the two Hertz vector potentials.
But, the set of multipole expansion functions is an equally suitable and even more general
choice for the purpose of generation of the vector testing functions. The general subscript j,
which is used in conjunction with the vector testing functions, symbolically represents the
the integer subscripts n,m and the superscripts “e” and “o”. The symbolic subscript j also
accounts for the possibility of having more than one multipole expansion function. If the
FEM solutions for the boundary conditions on the surface S have been expanded in terms
of spherical Bessel functions in order to express their radial variation, then one must use the

spherical Hankel functions in order to express the radial variation of both classes of testing
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functions. This choice will ensure that the resulting equations which are obtained at the end
of the testing procedure are linearly independent.

However, rather than applying either of the two classes of scalar expansion functions di-
rectly, one must first derive the two sets of vector testing functions from the scalar expansion
functions, and then apply a vector-based version of Green’s theorem on the inner boundary
surface S’ to the FEM solution for the H field and the two vectorial testing functions 3,-(E)
and 6,‘“’ . In this work, the vectorial testing functions are derived from the scalar expansion

functions y;;” in the following manner:

&
3
i

e o . 1€.0
7 = v x (395)

= (A1) —eoM) . co
®, = &y " =2yYy (10)

where the integer subscripts k, 1 Lie in the ranges given by 0 < I < N, 0 < k < [, the
superscripts “e” and “o” denote even and odd modes, respectively, and N is the particular
integer which controls the total number of testing functions. It is clearly seen from these two
equations that the superscripts (E) and (M) are assigned to the two vectorial testing func-
tions because of the apparent similarity between the definition of the “electrical/magnetic”
testing functions and the definition of the electrical/magnetic boundary condition terms on
the surface S. The above definitions of the two vector testing functions ensure a proper
balance in the directional properties of the FEM solutions for the H field and the testing
functions. Furthermore, they also guarantee a balance in the variation of the orders of
these two entities. The vector testing functions 3,-(5) and E,-(M) also must satisfy the vector

Helmholtz equation because of the way they are derived from the scalar expansion functions

- Thus, one can write the identities:
VHE + kH =0
v, 4+ 178 = 0 (1)
vz;j(“) + kozgj('\l) =0
To validate the bymoment code, we consider the problem of electromagnetic scattering

from a perfect electric conducting (PEC) sphere, a lossy dielectric prolate spheroid, and a

dielectric cube. The PEC sphere was chosen as the first test geometry since the solution is

34

SN =s ==




known and the computation domain can be limited to a few layers of elements on the surface
of the sphere. However, we have found that it is not easy to achieve an accurate finite
element solution to the sphere problem. The difficulty does not come from the bymoment
method but rather the inability of the FEM to model the geometrical shape of the sphere.
The discretization requirements are dominated by the geometry and not the wavelength.
Even with a 20-node isoparametric hexahedron, we require 96 elements (678 nodes) to form
a single layer elements on the sphere surface in order to obtain excellent results for a sphere
with a radius of 0.23 wavelengths. The nodal density is over 100 nodes per wavelength. As
we eventually found out, the sphere is one of the most difficult geometries to model due to its
curvature. A comparison of the bymoment results (25 spherical harmonic expansion terms)
with the Mie series solution is given in Figure 5.

The lossy dielectric prolate spheroid was chosen because numerical solutions are available
from codes which compute scattering from bodies of revolution [4]. For the prolate spheroid
shown in Figure 6, we obtain the far-field pattern (Figure 7) with the bymoment method
and compare it to the results obtained from [4], which we define to be the reference solution.
The incident magnetic field is assumed to be polarized in the —Z direction with the far-field
pattern taken in the zy plane. We see that the agreement is very good.

The final geometry is a dielectric cube with sizes of length 0.4 wavelengths (wavelengths
in dielectric) and permittivity ¢ = 4¢y. The far-field pattern is shown in Figure 8. As in the
previous geometry, the incident magnetic field is assumed to be polarized in the —z direction
with the far-field pattern taken in the zy plane. The reference solution is obtained from a
method of moments solution [5]. There is reasonable agreement. It should be noted that the
reference solution is also obtained from a numerical methods, so it is not clear which one is

the correct solution.

3. The Measured Equation of Invariance

The finite element method has always been handicapped in the modeling of electromagnetic
phenomena because of its inability to both accurately and efliciently simulate the radiation
condition. Recently, the measured equation of invariance (MEI) [6] has been proposed as

a rigorous local method for modeling perfectly conducting cylinders. It is based on the
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Figure 5: The variation of the calculated (solid line) and exact (dotted line) magnitude of
H, along the circumference of the conducting sphere in the zy-plane.
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Figure 6: A lossy dielectric prolate spheroid in free-space with an axis ratio of 2:1 and
& = 4.0 — 51.0.
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Figure 7: The variation of the calculated (solid line) and reference (dotted line) magnitude
of the normalized far-zone pattern in the zy-plane (E-plane) with a (—z)-directed incident
magnetic field.
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Figure 8: The variation of the calculated (solid line) and reference (dotted line) magnitude
of the normalized far-zone pattern in the zz-plane (E-plane) for the 81-element mesh.
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concept that accurate local finite difference (FD) equations can be written at the boundary
nodes if the geometry information can somehow be incorporated into the equations. Thus,
a general FD equation is used at the boundary where the coefficients in the FD equations
are unknown. These coefficients are then determined by the use of a sequence of “measures”

called metrons. A more detailed discussion of this procedure is described in the next section.

a. Analysis of MEI for scattering from 2-D cylinders

To analyze the MEI, let us consider the problem of electromagnetic scattering from a two-
dimensional perfectly conducting cylinder in free space (Figure 9). The boundary of the
cylinder is defined to be 85.. The formulation is derived only for the TAf (E,,H,,H,)
polarization since the same procedure can be used for the T E case. The field solution is ob-
tained from the solution of the Helmholtz equation for E,. The grid surrounding the cylinder
can either be a finite difference or a finite element grid. For this analysis, let us consider a
finite difference grid. At the boundary of the grid, we cannot apply the traditional finite dif-
ference approximation because the traditional difference approximation requires grid points
which are exterior to the grid. Thus, we must find another finite difference approximation
which incorporates the radiation condition. The measured equation of invariance is based on
the principle that a finite difference equation which couples the boundary nodes to the adja-
cent nodes can be formulated without using the traditional finite difference approximation.
One possible coupling is the six-node coupling shown in Figure 9, where node 6 is coupled
to nodes 1 through 5. To simplify the notation, the analysis is presented in terms of this
coupling scheme without any loss of generality. The finite difference equation at node 6 can

be written as
6
3 aE;=0 (12)
=1
where E?, is the scattered electric field at node ¢ and a; are constant coefficients which must

be determined. To find these coefficients, Mei et al. [6] use three postulates in which they

conjecture that the finite difference equation in (12) is
1. Location dependent
2. Geometry specific
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Figure 9: Geometry for the measured equation of invariance.
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3. Invariant to field excitation

The first two postulates can he shown to be trne by numerical experimentation. These two
postulates are also inherently incorporated into the global methods described in the previous
section. The validity of the third postulate is not as clear. If the third postulate is true, then
the coefficients in 12 can be determined from the field solutions at the six nodes due to five
linearly independent excitations or metrons (only five are needed since the sixth coefficient is
arbitrarily specified), which are denoted by the symbol ¥,. The five metrons represent five
linearly independent surface current density distributions on the conducting cylinder. The
metrons are usually chosen to be entire domain and to vary sinusoidally over the cylinder.
For example, the choice in [6] is

_J cosxks k=0,2,4
T\ sinx(k+1)s k=1,3

(13)
where 0 < s < 1 describes the perimeter of the cylinder. Although the results presented in (6]
seem to indicate that the third postulate is true, there were some unexplainable discrepancies
in the numerical results. The reasons for these discrepancies can be determined from an
analysis of the MEI.

An equation can be written relating E?; to the induced electric surface current density

J. on the cylinder as follows,

Bl = —jopo [ 955 Wa(5 ")l (14)
where p; is the position vector to node ¢ and g(p;,p ') is the free space Green’s function
which is given by

o(5n7") = H kol - 51 (15)
The variable k; is the free space wave number given by ky = w,/é;. The above equations

are for the TM polarization. For the TE polarization, we must use 7 - Vg where 7 is the

unit normal from the conductor surface. Equation (14) is substituted into 12 to obtain

6

S [ 9l W5 ) =0 (16)

Recognizing the fact that g(pi,5’) = g(p ', p:), we rewrite 16 as
6
[, [ S 30] 20 =0 ()
c Li=1
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The term inside the brackets has a special physical significance. It represents the electric
field on 8S, due to six line sources of weights a, located at the corresponding nodes i. Let

us define E,;; to be
6
Euull(i’. ') = Zaig(i l’ii) i’.’ € 85:: (18)

In order for the third postulate to be true, a set of coefficients a, must be found such that 17
is true for all possible excitations, i.e., all possible J,(5’) for 5’ € 8S.. This is only possible
in the instance that

Enu(f')=0 p' €8S, (19)

However, it is impossible to choose a set of coefficients a, such that 19 is satisfied. Thus, the
third postulate is incorrect. It should be noted that we use the notation E,,; in 18 since
the desired value of E, . is zero.

Although the third postulate is wrong, the numerical results obtained from this method
are still accurate. A detailed explanation for this accuracy in the form of a numerical study
is provided in [7]. From this analysis, we see that the accuracy is dependent on the choice of
metrons. It is expected that future research in the MEI will be in the development of more

sophisticated metrons.

b. The use of the MEI for bodies of revolution

For the body of revolution problem, the geometry of the scatterer is invariant with respect
to ¢, however, the fields are functions of ¢. It is useful to express the electric and magnetic
fields in their Fourier modes in ¢, because we will then have a series of modes which are

invariant in ¢. Let us consider the ¢ components,

oo

Ey(p,,2) = -Z_ em(P)z)ejmpM (20)
Hy(p,9,2) = f.: hm(paz)ejmé (21)

where the exp(jwt) time variation has been suppressed. Now instead of solving a three
dimensional FEM problem we will be able to solve a series of two dimensional problems for

e™ and A™, since both these terms are independent of ¢. In this work, the coupled azimuthal
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Figure 10: Sample body of revolution and mesh.

potential (CAP) formulation is used to perform the finite element analysis. This analysis is
described in a previous paper [8]. The geometry for the problem is shown in Figure 10.
The MEI boundary conditions are based on the postulate, that for each node on the
truncation boundary there exists a linear relation,
N-1
Y (aie™ + binh™) = 0 (22)
=0
where ¢’ and R’ are the scattered electric and magnetic fields, respectively, for mode
m, where 1+ = 0 is the subscript of the node of interest and i = 1 to i = N — 1 are those
of neighboring nodes. This means that a nodal value on the truncation boundary will be
coupled only to values at the neighboring nodes. The free space impedance 7 is placed
explicitly in 22 to properly scale b; relative to a,.
To define the MEI equation, we still need to find the coefficients a, and b, for each nodal
value. To obtain geometry specific measuring functions a surface current density J "(+') on
the scatterer surface, which is commonly referred to as a metron, is used. Note that in

Equation (22) we are free to multiply by a constant and choose one of the coefficients. Thus,
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2N — 1 unknowns must be determined. By choosing 2N — 1 linearly independent metrons,
we can form a 2N — 1 by 2N ~ 1 matrix equation to solve for the 2N — 1 unknowns. It is
also possible to use more than N metrons and then find a solution for the overdetermined
system, but this is not done here.

To find the a,’s and b,’s we will now need measuring functions for both the electric
and magnetic fields. Consider the electric vector potential A due to a metron J" (n =
1,...,2N - 1),

. 2w g-iklF-F'] oy

A= [ [ o (7 dg e’ (23)
where + is the observation point, and 7' is the source point. We can now use the vector
potential to solve for the measuring functions e™" and nA™", which are the field values at

the nodes on, and just inside, the truncation boundary due to the metron J’ ", i

e = g- (j—”,;v x V x /f""") (24)
nh™" = - (V x A™"). (25)

Substituting these measuring functions back into the MEI equation, we can solve for the

coefficients a, and b,. The metrons used are given by
jn = { J}:sin [(n+1)8/2) n odd (26)

(7 x ¢)sin [n6/2] n even

where 6 is a parametric mapping of 85 to [0°,180°] (See Figure 10). In the case where the
geometry is spherical, # becomes one of coordinates in the spherical coordinate system. The
metrons are chosen so that there is no net flow of current into the single point on the axis.
To demonstrate the accuracy of the MEI, two results are presented. In both cases, results
are compared to those obtained from a method of moments body of revolution code [9]. The
first is the plane wave scattering from a finite perfectly conducting circular cylinder with a
radius of 5 wavelengths and a length of 5 wavelengths. The magnetic field Hy on the surface
of the cylinder is plotted in Figure 11. The results are close except near the top (6 = 0°)
and bottom (6 = 180°) of the cylinder, where we expect the method of moments code to be
incorrect due to its formulation. The second problem is a plane wave incident on a perfectly

conducting cone (Figure 12). The results in this case do not agree as well as the previous
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Figure 11: Magnetic field on the surface of a conducting cylinder, using sinusoidal metrons
(6" = 180°, R = 2.5, H = 5.0A, Mesh: 20 nodes/), 5 layers of nodes).

MAGNETIC FIELD ON A CONICAL CONDUCTOR

3 g T T J 4 T T v
: ' ‘ ' ‘ ! MOM i——
2.5 FEM -
E
> 2
e
<
‘4 1.5
=
o 1}
e
1]
0.5
0 1 1 1 i i i ; i

0 20 40 60 80 100 120 140 160 180
Theta (degrees)

Figure 12: Magnetic field on the surface of a conducting cone, using sinusoidal metrons
(6™ = 180°, R = 5.0\, H = 1.0}, Mesh: 20 nodes/ ), 5 layers of nodes).
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Figure 13: The partitioned solution domain.

results. It is evident that the MEI boundary condition is only approximate. A more detailed

discussion of the MEI applied to the body of revolution is currently in preparation (10].

4. A Sequential and Parallel Implementation of the Partitioning
Technique

In the 1992 JSEP annual report, the partitioning finite element technique was described for
scattering from a two dimensional infinitely long cylinder. The partitioning was performed
along only one of the dimensions, and results were presented to show the improvement in
efficiency compared to a direct finite element solution based on a banded matrix solver. A
journal paper has been accepted based on this work [11].

In this past year, the partitioning finite element techniques has been extended to allow
partitioning to be performed along both dimensions (two-way partitioning). A sample par-
tition is shown in Figure 13. It is expected that a two-way partition will be more efficient
than a one-way partition based on a complexity analysis. We have also begun using sparse
matrix solvers based on a nested dissection ordering of the matrix [12]. As we will see from

the numerical results, The sparse solver is much more efficient than a banded solver. To
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Table 1: Time comparison for solving the entire body vs. the partitioned body.

solution | entire method |

partition technique

domain time(sec) subregion | time(sec) | time(sec)
| banded | sparse general special
[ 4X sq 5.1 1.006 | .5\ sq 1.21 0.772

12 sq 1.705 1.358
8)sq | 106.893 | 5.774 .5 8q 5.645 2.762
1A sq 7.968 3.922

12X sq 16.266 | 5hsq | 14.180 | 7.039
1Asq | 19.364 | 7.917

test the performance of the partitioning technique, we consider square computation domains
of various sizes. The computation region is assumed to contain a plane wave propagating
through free space. This choice allows us to use either a Dirichlet or Neumann boundary
condition on the computation boundary, thereby removing the computation of the boundary
condition from consideration.

In Table 1, timing results on a Cray YMP/864 supercomputer are presented for three
different cases. The entire technigue refers to the traditional finite element method where
no partitioning is used. The first thing to note is that the banded solver is very inefficient
compared to the sparse solver. In the partitioning technique, the geometry is divided into
either 0.5\ by 0.5A sections or 1.0\ by 1.0) sections where A is the wavelength. The times
for the partitioning technique are divided into the general case and the special case. In the
general case, each section is assumed to be different from every other section. However, in
the special case, every section is assumed to have the same shape and material properties.
Thus, for geometries containing large regions of homogeneity, the computation time is closer
to the special case. It is evident from Table 1 that the partitioning technique is much
more efficient than the entire technique with a banded solver and potentially more efficient
than the entire technique with a sparse solver. In fact, as the geometry size increase, the
partitioning technique should become more efficient relative to the entre technique with the

sparse solver.
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Table 2: Memory comparison for solving the entire body vs. partitioned body.

entire body | Memory(Mword) | subregion | Memory(Mword) |
banded | sparse
1) sq 0.625 | 0.557 | .5Xsq 0.0553
1) sq 0.0348
8) sq 4.802 | 2.805 .5) 8q 0.385
1) sq 0.175
12) sq 15.987 | 7.068 5] 8q 1.118
1) sq 0.541

——

One of the greatest advantages of the partitioning technique is its small memory require-
ments. In Table 2, the memory requirements are presented. The tremendous decrease in
memory requirements is due to the fact that the solution on each section can be handled
sequentially.

The partitioning technique is ideally suited for parallel computers since most of the com-
putation tasks for each section are independent of the other sections. The interaction between
the separate section occurs only at the final step, where the sections are joined by means of a
coupling matrix. Thus, each section can be placed on a single processor, and the independent
computations are performed without any interprocessor communication. The interprocessor
communication only occurs in the evaluation of the coupling matrix. The coupling matrix is
solved with a sparse matrix algorithm specifically designed to balance the computation load
and minimize the interprocessor communication. The performance of the partitioning tech-
nique on the Intel Delta machine operated by the Concurrent Supercomputer Consortium
is demonstrated on an 8\ by 8\ computation domain, where the subdomains are 1\ by 1).
The initial results are shown in Table 3. Although the computation domain is small relative
to the number of processors considered, the results still show good speedup. It is expected
that with a larger computation domain, the speedup will be considerably better. We are

currently testing more cases on the parallel mach:ne.
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Table 3: Time performance on Delta machine. 8\ by 8\ computation domain divided in 1)
by 1) sections.

No. of Processors | Time (sec.)
2 54.05
4 29.12
8 17.55
16 11.57
32 7.83
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1. Introduction

The prediction of the EM radiation, scattering and propagation effects in increasingly com-
plex environments whose overall dimensions are electrically large is a challenging task, be-
cause neither the high nor the low frequency techniques alone can, in general, provide useful
solutions to describe such effects in a tractable and efficient manner. Thus, it becomes
necessary to consider ways to break up the complex radiation, scattering and propagation
configurations being analyzed into subdomains which can be classified as being high or low
frequency regions depending on whether those individual regions are electrically large or
small, respectively and then analyze these subdomains efficiently using separate methods or
procedures which are best suited for it. Of course, these techniques must then be system-
atically combined in a self-consistent fashion to provide the desired solution for the entire
configuration. Broadly speaking, such a systematic combination of different methods or
techniques for analyzing any given complex radiating system may be referred to as a hybrid
method of analysis. It could happen that an analysis of some of the subdomains of the en-
tire complex radiation, scattering and propagation environment may itself require a hybrid
treatment; in those cases, the systematic combination of such hybrid techniques to deal with
the entire configuration may then be referred to as a super-hybrid method. For example,
one may consider analyzing the phenomenon of EM radiation or scattering associated with
a modern aircraft type of configuration, which is rather complex in that it consists of several

antennas, radomes and other windows, jet inlet and exhaust cavities, etc., in addition to its
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overall fuselage and control surfaces. It is possible to efficiently analyze the effects of the
asirframe, antennas, radomes, inlets, etc., separately using a hybrid combination of appropri-
ate high and low frequency methods for each part, and then systematically combine these
effects via a super-hybrid scheme to deal with the entire aircraft. Another example of the
prediction of the interaction of EM waves with a complex structure is that which occurs in
a shipboard environment containing a variety of large and small antennas. At present, work
is in progress to develop useful hybrid schemes to predict: 1) the behavior of microstrip
antennas as well as radome covered conformal slot arrays including feed networks, 2) the
radiation and scattering of waves associated with complex aircraft and missile shapes, 3) the
topside field distribution on ship models illuminated by large shipboard aperture antennas,
and 4) the scattering by relatively arbiirarily shaped inlet cavities containing complex engine
terminations. The present research work has built upon the initial ideas and concepts which
led to the original hybrid combination of the asymptotic high frequency UTD technique (see
the area of Diffraction Studies) with the moment method (MM) procedure fc: solving the
low frequency integral equations for radiation/scattering as developed earlier at The Ohio
State University [1, 2]. Solutions to a wide variety of additional useful topics still remain to
be explored by hybrid methods; these will be addressed in the future phases of this study
as the work in hybrid studies which is currently being pursued nears completion and lays
the foundations for dealing with the next phase. The current accomplishments are reviewed

next in slightly more detail.

2. Hybrid Analysis of Conformal Antenna Configurations

A hybrid MM-UTD method was developed previously under JSEP so that it could be im-
plemented to efficiently analyze a large but finite array of stripline dipoles, patch antennas
or other stripline antenna configurations on planar single and double layer grounded ma-
terial substrates [3]-[5]. A direct numerical solution of such configurations using integral
equation or differential (ie., finite difference or finite element) schemes would become rapidly
intractable with an increase in the number of planar array elements especially at high fre-
quencies. The hybrid procedure developed in [3]-[5] would on the other hand not suffer

from any such limitations. During the present period, the previous work in [3]-[5] has been
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extended to deal with slot arrays in a planar perfectly conducting screen and covered by a
material superstrate that can be used for impedance matching and also as a radome.

The latter MM-UTD type hybrid solution is based on the development of an efficient
closed form asymptotic (UTD type) aperture dyadic Green’s function for a material coated
ground plane containing an aperture; this Green’s function is used as the kernel of the integral
equation in the MM formulation of this slot array configuration. It is noted that the exact
Green’s function in this case is conventionally given in terms of a very slowly convergent
Sommerfeld type integral which makes it almost intractable to treat large slot arrays with a
material coating. The MM-UTD type hybrid technique can be employed to very efficiently
analyze the performance of a large but finite array of slots in a planar conducting screen
covered by a uniform material layer; also, it can accurately predict the scan performance
of such arrays. It is seen from the literature that the performance of large (but finite)
arrays is usually estimated via an infinite (periodic) array solution which is then modified
to account for the finiteness of the array (i.e., the array edge effects) in an approximate
fashion. This procedure is usually employed because the solution for the infinite periodic
array is tractable as it restricts the unknowns in the MM solution to only a “unit cell” in
the periodic array, and the effects of periodicity are rigorously accounted for using Floquet’s
theory. In contrast, the hybrid MM-UTD type solutions developed here for printed antennas
and slots can deal very efficiently with a very large array of such radiating elements and
automatically account for the array edge effects. It is proposed to compare the commonly
used infinite array solution with the one based on the present hybrid approach for large finite
arrays to see if there are significant differences between these two approaches especially for
large scan angles where the edge effects can become important. As a further extension to this
work, solutions have been obtained for the dyadic Green’s functions that correspond to the
fields of electric or magnetic point current sources near material coated perfectly conducting
cylinders and spheres. Presently, the development of closed form asymptotic (UTD type)
representations for these Green’s dyadics for curved coated conducting surface are in progress.
It is expected that once the challenging task of obtaining asymptotic estimates for the fields
which remain valid even in the relatively close proximity of the point sources is completed,

they will provide the same degree of versatility for treating a large finite array of antennas

54




(printed dipoles, patches, or slots) on material coated conducting cylindrical and spherical
surfaces via a hybrid MM-UTD scheme as done for the corresponding planar cases discussed
above. Furthermore, the UTD-like asymptotic form of the Green’s functions for coated
cylindrical and spherical surfaces can be extended via UTD concepts to treat antenna arrays
located on convex conducting surfaces of variable curvature such as those encountered on
the fuselages of aircraft and missile shapes. Such an extension of the canonical cylinder and
sphere solution was performed previously under JSEP to deal successfully with the radiation
from and mutual coupling between antennas on uncoated convex conducting surfaces of
variable curvature [3]; the corresponding extension for coated convex surfaces is much more
involved. Once the hybrid MM-UTD technique is completely developed for dealing with
antennas and arrays of antennas on coated convex conducting boundaries of non-constant
curvature, then it will provide a very powerful approach for the analysis and design of large
finite conformal antenna arrays on such structures which otherwise cannot be handled even
approximately using a periodic (or infinite) array analysis as has been done for the planar
case in the literature since a variable surface curvature in general totally destroys periodicity.
As a further extension, it is planned to include the effect of feed lines into the techniques for
handling conformal arrays using the above mentioned hybrid MM-UTD type analysis. Such
an integration will be made possible with the solutions that have been obtained recently for
describing the waves on coplanar waveguides (CPW), slot lines, strip lines, etc.; these feed
line solutions developed under this hybrid studies unit of JSEP have already been described
in the previous annual report. The advantage of this hybrid approach will be that the
unknowns in the MM will be limited to the antenna elements only (because of the UTD-like
Green’s function which will be incorporated as the kernel of the integral equation being solved
by the MM procedure) and to just a few unknowns corresponding to the coupling amplitudes
of the known behavior of the fields of modes on the array feed lines near and far from any
feed line discontinuities, and to a minimal number of conventional MM subsectional basis
set, if at all necessary, for describing the fields near the line discontinuities. Thus, a very
efficient, physically appealing and accurate prediction of the phenomena of EM radiation,

mutual coupling, and scanning in the very general case of large conformal arrays on convex
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conducting surfaces of variable curvatures and with a uniform material coating will become

available via the proposed hybrid procedure being developed here.

3. Hybrid Analysis of Radiation/Coupling Associated with Large
Antennas in a Complex Environment

A generalized ray expansion (GRE) was developed previously under JSEP to deal with
the EM scattering from open cavities [6]. That GRE is now being utilized along with
some of its extensions and modifications which are currently in progress to predict the
field behavior of large antennas (e.g., electrically large electronically and/or mechanically
scanned phased arrays; mechanically scanned large reflector antennas, etc.) in a relatively
complex environment. As described in the previous annual report, the large antennas are
replaced by a set of equivalent sources over an appropriate mathematical surface which
encapsulates the antenna so that the equivalent sources now radiate essentially the same
field external to that surface as does the original antenna. The equivalent sources are found,
for example, via a simple and highly efficient Gaussian expansion of the fields on the physical
aperture of the antenna which are assumed to be known. The coefficients of the relatively few
Gaussian elements required in this expansion are determined in a straightforward manner
via Galerkin’s method. The near fields of the antenna, which directly provide the equivalent
sources over the encapsulating mathematical surface, are then found, by evaluating the
radiation integrals containing the Gaussian expansion, in closed form. It is interesting that
this closed form near field solution is valid at distances much closer to the physical antenna
aperture than the conventional Fresnel zone distance. Furthermore, this near field solution
is also automatically valid everywhere in the intermediate and far zone. The latter property
provides one with a very efficient near field to far field transformation as a useful by-product.
However, Gaussian beam (GB) techniques are not utilized in the present work to describe the
fields radiated from the equivalent sources which are defined over the mathematical surface
encapsulating the large antenna in question. Only the equivalent sources are represented
in terms of closed form expressions for the fields radiated from the relatively few Gaussian
aperture elements that are used in the aperture field expansion. It is noted that other types

of Gaussian aperture elements (such as those based on a Gabor expansion) would not lead
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to as efficient an expansion as the one developed here, because in the present approach
the expansion is not required to synthesize any discontinuities that might be present at the
edges of the physical aperture surface field distribution. In the present work, the GRE and
its modifications (which are currently under study) are being considered for representing
the fields radiated by the equivalent sources over the encapsulating mathematical surface so
that ray methods can be employed to predict the effects of complex obstacles illuminated
by the antenna. The advantage of the GRE concept is that one does not have to recompute
the paths of rays launched from a discrete array of points on the encapsulating surface even
if the antenna is scanned mechanically or electronically. The ray paths are independent
of the antenna orientation or excitation; they depend only on the given geometry of the
complex environment in the presence of the antenna. The initial ray launching amplitude
of course depends on the antenna orientation and excitation. The development of a hybrid
analysis of some complex structures which can be illuminated by such antennas has recently
begun. Some examples of such structures are masts or other objects which can be modelled
by the UTD. The conducting mast could be solid and impenetrable or be made up of a
zig-zag or triangular array of finite length rods. A hybrid MM-UTD like analysis is currently
being developed for such masts. The latter is of interest for predicting the effects of large
antennas in shipboard environments. An application of this novel hybrid Gaussian-GRE-
UTD approach being developed here is indeed useful for dealing with shipboard antennas;
the latter application and associated code development that fit some specific needs are being
currently funded under a separate grant from the Navy. Details of the hybrid Gaussian-
GRE-UTD approach discussed above will be reported by the end of the next period.

4. Hybrid Analysis of Radiation and Scattering Associated with
Airborne/Spaceborne Objects

The development of a hybrid method based on the combination of MM-UTD hzs been nearly
completed for dealing with the radiation by antennas on or the scattering from a configuration
consisting of a perfectly conducting circular or elliptical cylinder to which can be attached
perfectly conducting plates of relatively arbitrary shapes. Such a configuration can simulate

a generic aircraft fuselage with wings and horizontal as well as vertical stabilizers, or a
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missile shape with fins. This hybrid procedure is efficient because it employs an asymptotic
(or UTD) closed form representation for the fuselage Green’s function; thus, the unknowns
in the MM solution of the governing integral equation which contains this Green’s function
as the kernel are restricted to only the control surfaces (wings and stabilizer). In contrast,
a conventional MM solution would utilize a free space Green’s function as the kernel of
the governing integral equation thereby requiring one to solve for the unknown currents
induced over the entire aircraft/missile structure in question, thus making it practically
intractable for use at high frequencies. For example, a typical aircraft is several hundred
wavelengths long at X-band; this leads to a prohibitively large number of unknowns (about
16 per square wavelengths if subsectional basis functions are used) over the entire surface of
such an aircraft. In contrast, the present hybrid MM-UTD drastically reduces the number of
unknowns to only the control surfaces. In this hybrid scheme, it was necessary to extend the
previously developed UTD for convex surfaces {2}-[4] that was valid only for source/observer
either directly on or not close to the convex surfaces. The above extension was required
because this hybrid MM-UTD must have a knowledge of both the extreme near, intermediate
and far zone fields of sources which can be close to but not necessarily located directly on
the convex boundaries. This UTD extension was reported in the previous annual report.
During the present period, considerable effort has been expended to determine the regions
of validity of the different extensions of the UTD corresponding to different source and
observer regions since it was not possible to obtain a single expression valid uniformly for all
source/observer locations with respect to the convex body, which would at the same time
remain very efficient for computations. Due to the fact that the exact form of the error of
the different extended UTD expressions which were developed it not known, a more heuristic
approach based on numerical experiments was instituted to determine the various conical
and cylindrical mathematical boundaries which define the regions of validity of each of these
different extended UTD expressions. Such delineation of the various regions of validity for
the extended UTD expressions are necessary for use in a hybrid MM-UTD based algorithm to
obtain accurate numerical results. Indeed some numerical results pertaining to the scattering
by a small fin on a circularly cylindrical conducting surface which have been obtained using

the above hybrid MM-UTD are seen to compare very well with measurements. It is proposed
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to extend this work next to include a UTD Green’s function which is valid for a general convex
surface to model a fuselage more accurately than is possible with just a cylindrical surface;
this could also include the effects of the fuselage end cap (to simulate a transparent radome on
the nose of the fuselage). Such a UTD Green’s function will be developed under the unit on
Difiraction Studies which deals with the paraxial radiation and diffraction associated with
antennas near an elongated smooth convex surface with perhaps an end cap. Additional
future extensions will include the integration of conformal antenna and antenna arrays,
as well as the integration of inlet/exhaust cavities into the aircraft/missile structure via a
super-hybrid scheme as discussed in the introduction. Furthermore, it is planned to achieve
a further reduction in the number of MM unknowns (= the number of basis functions) on
the control surfaces by incorporating a mix of a relatively few conventional subsectional MM
basis set and an entire domain physical basis set (dictated by an anticipated UTD surface
field behavior), rather than the larger number of conventional subsectional MM basis set

currently in use within the hybrid MM-UTD for the generic aircraft/missile shape.

5. Hybrid Analysis of the Scattering of an Impedance Wedge in
the Presence of a Material Body

The purpose of this analysis is to study the electromagnetic scattering characteristics of a
material body in the presence of a wedge shaped object. This is a two dimensional problem
where the wedge is of infinite extent and its faces can have different impedance boundary
conditions. The material body is of arbitrary shape and can be inhomogeneous. The moti-
vation for this effort is that the purely analytical results described in the Diffraction Studies
section (diffraction by thin material edges/junctions and coated conducting edges) are lim-
ited to simple canonical shapes. Hybrid schemes such as the one described here will allow
us to solve much more complicated configurations that are more realistic for practical appli-
cations. The results to be developed in this effort can be used in an existing optimization
algorithm to synthesize a d  .d frequency response of a wedge shaped material scat‘e:: .

The main idea of the hybrid scheme presented here is to use the analytical results obtained
under the Diffraction Studies section to obtain numerically efficient Green’s functions which

can them be used to develop integral equations with as few unknowns as possible. The
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method of analysis that is being used is a method of moments/Green’s function technique
where the Green’s function is that for a wedge with different impedance faces. The method
of moments technique is used to solve for the field that is scattered by the material body.
The major tasks to be accomplished in this project are to 1) solve for the two dimensional

Green’s function for the impedance wedge, 2) formulate an integral equation for the unknown

scalar field inside the material body, and 3) implement a method of moments technique to
solve the integral equation.

The following is an overview of what has been accomplished in the past year. Most of the
work has been in developing the Green’s function. There are no restrictions on the Green’s
function since it must be valid everywhere in space. Due to the fact that it will be called
numerous times by the moment method technique, it is necessary for the Green’s function
to be in a form that is computationally efficient to evaluate, and this is where much of the
effort has been spent [7].

The two dimensional Green’s function for the impedance wedge is in the form of a double
integral with an integrand that has many singularities. Because the integrand is, in general,
a very complex expression, the integral cannot be evaluated in closed form. Each of the
integrals depends on the location of either the source or the observation point. The contour
of integration which pertains to the location of the observation point is along a Sommerfeld
contour, while the contour of integration that pertains to the location of the source point
is along a steepest descent path. The location of the source or observation points can be
considered to be in one of three regions, either the near zone, intermediate, or far zone,
which is determined with respect to their increasing radial distance from the wedge vertex.
When the observation point is in the near zone, it is more efficient to numerically evaluate
its associated integral along a deformed Sommerfeld contour. In fact, this integral can even
be evaluated in closed form for the limiting case when the observation point approaches the
wedge vertex. However, at larger distances from the wedge vertex, it becomes more efficient
to numerically evaluate the integral along a steepest descent path. Therefore, for the case
when the observation point is in the intermediate or far zones, the Sommerfeld contour is
deformed to a steepest descent path through its saddle point. This integral is evaluated

numerically using a very efficient Gaussian integration routine when in the intermediate
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gone, and it is evaluated asymptotically when in the far zone. Similarly, the contour of
integration pertaining to the source point is along a steepest descent path which is also
deformed to its respective saddle point and is evaluated asymptotically when the source
point is in the far zone and evaluated numerically otherwise. Further work is being done
to obtain a representation for the Green’s function which is more efficient to evaluate when
both source and observation points are in the near zone.

Deforming the contours of integration in the double integral gives rise to many terms
that contain single integrals. These integrals are evaluated in the same manner as men-
tioned above. Also, all of the singularities in the integrands are explicitly separated from
the integrals and evaluated in closed form. The result is that we have various forms for the
Green’s function, each designed for maximum efficiency in computation depending upon the
region for which it needs to be evaluated. Since the Green’s function satisfies reciprocity,
the above conditions also apply when the source and observation points are interchanged.
A computer code has_ been written to evaluate the Green’s function using the analytic ex-
pressions described above as well as a reference solution which uses a method of moments
technique. The agreement between the two methods is very good.

A computer code has also been written which determines the scattered field, due to an
incident plane wave, from an inhomogeneous material body in the presence of the wedge.
This solution uses the specialized Green’s function for the wedge described above. The
current configuration for the material body is in the form of a dielectric slab of rectangular
cross section where the relative dielectric constant can vary within the slab. The location
of the slab with respect to the wedge is arbitrary. This will later be modified so that the
material body can be of arbitrary shape and not limited to dielectric materials. In fact, the
present integral equations will be modified so that chiral as well as anisotropic materials
can be studied. The code has been verified for the limiting case when the impedance wedge
becomes a perfectly conducting semi-infinite half plane. For this case, a comparison was
made with a code developed by Dr. E.H. Newman for the case of plane wave scattering
from an inhomogeneous rectangular dielectric slab in the presence of a PEC semi-infinite

half plane. The agreement between the two codes is excellent.
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8. Hybrid Analysis of Planar Guided Wave Structures

Most of the details of the research effort in this topic was reported last vear. The results
of this research efforts resulted in a PhD Dissertation [8] and two journal papers (9, 10].
The method used to perform the analysis of the propagation characteristics of planar trans-
mission lines is referred to as the Wiener-Hopf/Generalized Scattering Matrix Technique
(WH/GSMT). This method is applicable to transmission lines with large lateral dimensions.
It can complement numerical schemes which are more efficient for small structures. The
first paper [9] concentrates on introducing the method and only a few numerical results are
shown. The goal of the second paper [10] is to demonstrate the versatility of the present full
wave analysis scheme by applying it to a variety of planar transmission line configurations.
Note that the complex propagation constants for the transmission lines were obtained for
the dominant as well as higher order modes. This is in contrast to many published papers
found in the literature where only the real part of the propagation constant is given for
the dominant mode. Due to the analytical nature of the WH/GSMT, the results based in
this method can be used as reference solutions for the more common numerical techniques.
It it noted that as more advances are made in the analysis of electromagnetic diffraction
by material bodies with edges, junctions, etc., those results can be used to analyze more

complicated planar transmission lines by means of the present WH/GSMT.

7. Hybrid Ray/FDTD Method for Inlet Cavities

The use of ray methods coupled with the finite difference time domain (FDTD) method
for scattering from jet inlet cavities was discussed in last vear’s report. In that report, we
presented a preliminary description of the ray/FDTD method. The use of a hybrid method
is ideal for a jet inlet cavity since the the cavity contains a portion which is simply shaped
(the inlet duct) and a portion which is geometrically complex (the engine termination). The
generalized ray expansion (GRE) method is used to model the duct while the FDTD method
is used to model the termination. The major difficulty comes in the coupling between the two
methods. Based on the work done this past year, we have developed several techniques for

coupling the two methods. A detailed description of the coupling between the GRE method
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Figure 14: Geometry of cavity with termination.

and the FDTD method is provided below. The work on the hybrid ray/FDTD method has
been accepted for publication [11].

As with most electromagnetic hybrid methods, the coupling between the individual meth-
ods has to be handled with care. Consider the cavity shown in Figure 14. The cavity has
been divided into three regions corresponding roughly to the air intake, the engine, and the
exhaust sections of a jet engine inlet. The imaginary surface S;, separates Regions 1 and
2 while Sy, separates Regions 2 and 3. In Region 1, the cavity is assumed to be smoothly
varying for high frequency methods, i.e., ray methods, to be valid. Ray tubes are traced
from the aperture of the cavity to Sy, where they are summed to form a high frequency
solution of the cavity fields across S7,. This solution on Sy, is used as the excitation for the
FDTD computation in Region 2.

We will now describe two approaches to the coupling between the GRE and the FDTD
methods. Depending on the size of a ray tube when it reaches S7;, it will either not intersect
any of the FDTD grid points on S7; or it will intersect one or more of those grid points.
Therefore, different ray tubes will contribute differently to the total field of a grid point.

Moreover, it is possible that some grid points will not have any ray tubes intersecting them.
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As a result, the incident fields on S7, evaluated via rays will not be smoothly varying. In
order to obtain a smoothly varying as well as an accurate field on Sy, the size of the ray
tube can be restricted so that it will only intersect one FDTD grid point. Alternatively,
some form of interpolation can be applied to the ray tubes that intersect more than one grid
point. In both of these approaches, a ray tube is launched and tracked via its central ray
to S71. The projected ray tube area (for the 3D case, width for the 2D case) on Sy is then
determined. If this area is greater than some specified area, A,, the ray tube is subdivided
and the process of tracking and determining the projected area of the smaller ray tubes is
repeated. In the first approach, 4, is equal to the FDTD grid spacing (usually A/20) for the
2D case so that if the projected ray tube width is less than A, that ray tube can intersect
at most one FDTD grid point on Sy;. In such an event, the field specified by the central ray
will be added to the intersected grid point. Ray tubes that do not intersect any grid point
are ignored.

For the second approach, we use a larger value of A, (4, = A/4). Since a larger ray
tube may intersect more than one FDTD grid point on S7, its contribution to the field on
Sty is determined by converting its ray field into modal fields. Specifically, the contribution
of the ray field to the modal coefficients are determined by integrating the ray field over
the projected area of the ray tube assuming a linear phase variation in the field over the
projected area with respect to the field of the central ray. This approach assumes that the
fields on Sy are expressible in terms of parallel-plate waveguide modes for 2D problems.
This assumption can usually be satisfied by a suitable choice of St;. In realistic 3D problems,
there is usually a narrow section in front of the termination which is cylindrical so that the
fields i;l this narrow section can also be expressed in terms of modes. In any case, when
the modal coefficients have been obtained by summing the contributions due to all the ray
tubes, the desired field at each FDTD gnid point on Sy can be determined.

Comparing the two approaches, it is clear that the first approach requires more ray tracing
(which means more computational time and storage) than the second approach because of
the smaller A,. However, once the rays are traced, the first approach uses only a simple
summation of the ray fields to obtain the desired fields at the FDTD grid points on S;y.

The second approach is less efficient in this latter aspect as it has to compute the modal
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coefficients and then sum the modal fields to get the desired fields. However, in realistic
3D problems, the first approach may not he viahle because the amount of ray tracing can
become excessive.

Another consideration in the coupling of the GRE and FDTD methods is the selection of a
suitable time variation for the excitation since the former is a frequency-domain method while
the latter is a time-domain method. There are two possible schemes for the time variation:
the sinusoidal steady-state time variation and the pulsed (usually Gaussian or raised-cosine)
time variation. For the steady-state FDTD, the ray solution on Sy, is evaluated only at a
single frequency of interest. Based on the complex ray field solution at S;;, the excitation
can be made to vary sinusoidally with time. For the pulsed FDTD, there are two possible
alternatives. For the first alternative, the ray solution on Sy, is computed over a range of
frequencies corresponding to the frequency content of the pulse. The excitation can then be
obtained by an inverse Fourier transform of the product of the ray solution and the Fourier
transform of the pulse. This alternative is not attractive as the resultant inverse transform
will have a wide time window with a number of significant pulses due to the different arrival
times at Sy, of the reflected, diffracted and reflected-diffraction fields. A better alternative
is to use a basis set (eg. modes) as excitation for the pulsed FDTD to characterize the
termination section in terms of a termination scattering matrix. This scattering matrix,
together with the ray solution on Sr| (expressed also in terms of the basis set), can then be
used to find the cavity scattered field. The pulsed time variation scheme is more efficient for
problems which require multiple frequency solutions while the steady-state scheme is more
efficient for problems which require only a single frequency solution.

Regardless of the time variation used, the excitation produces a wave which propagates
toward the termination and interacts with it. For the geometry shown in Figure 14, part of
the wave may be transmitted to Region 3 through Sy, while the remainder is reflected back
towards Sr;. If we assume that the waves leaving Region 2 through the imaginary surfaces
Sty and S7; do not return, then an absorbing boundary condition can be applied in the
FDTD computations at each of the two surfaces. The above assumption is reasonable as
most jet engine inlets are shaped in such a way that there is very little energy that returns

to Region 2 upon its exit from there. Otherwise, we can convert the waves leaving Region 2
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back into rays (using GRE) and track those rays that return to Region 2. These returning
rays act as an additional excitation.

The results based on this coupling scheme have been excellent for the two dimensional
case. We have implemented the method for three-dimensional geometries and are currently

validating the code with reference solutions.
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